Privacy in Encrypted Content Distribution
Using Private Broadcast Encryption

Adam Barth!, Dan Boneh*!, and Brent Waters?

! Stanford University, Stanford, CA 94305
{abarth, dabo}@cs.stanford.edu
2 SRI International, Menlo Park, CA 94025

bwaters@csl.sri.com

Abstract. In many content distribution systems it is important both to
restrict access to content to authorized users and to protect the identities
of these users. We discover that current systems for encrypting content
to sets of users are subject to attacks on user privacy. We propose a new
mechanism, private broadcast encryption, to protect the privacy of users
of encrypted file systems and content delivery systems. We construct a
private broadcast scheme, with a strong privacy guarantee against an
active attacker, that achieves ciphertext length, encryption time, and
decryption time comparable with the non-private schemes currently used
in encrypted file systems.

1 Introduction

In both large and small scale content distribution systems it is often important
to make certain data available to only a select set of users. In commercial con-
tent distribution, for example, a company may wish for its digital media to be
available only to paying customers. On a smaller scale, suppose a department’s
faculty need to access the academic transcripts of graduate applicants. If elec-
tronic copies of the transcripts were stored on the department’s file server, they
should only be accessible by the faculty and students.

It is often equally important to protect the identities of the users who are
able to access protected content. Students receiving an email from an instructor
notifying all students failing a class would likely wish to keep their identities pri-
vate. Commercial sites often not want to disclose identities of customers because
competitors might use this information for targeted advertising. If an employee
is up for promotion, a company might wish to hide who is on his promotion
committee and therefore who is able to read his performance evaluation.

Employing a trusted server is the most commonly used method for protecting
both electronic content and the privacy of users who can access it. Whenever a
user wishes to access content stored on a trusted server, the user contacts the
server, authenticates himself or herself, and is sent the content over a secure
channel. As long as the server behaves correctly, only authorized users will be

* Supported by NSF.

able to access the content and which users are authorized to access which content
will not be divulged, even to other authorized users. While this simple method
of data protection is adequate for some applications, it has some significant
drawbacks. First, both data content and user privacy are subject to attack if the
server is compromised. Additionally, content providers often not distribute their
data directly, but for economic reasons outsource distribution to third parties
or use peer-to-peer networks. In this case, the content owners will no longer be
directly in control of data distribution.

For these reasons, we examine the problem of efficiently distributing en-
crypted content in such a way that (1) only authorized users can read the con-
tent and (2) the identities of authorized users are hidden. We study this problem
for the case of encrypted file systems. However, our results can be generalized
to larger content distribution systems, including encrypted email.

Encrypted File Systems. Encrypted file systems implement read access control
by encrypting the contents of files such that only users with read permission are
able to perform decryption. Typical encrypted file systems, such as Windows
EFS, encrypt each file under its own symmetric key, K, and then encrypt
the symmetric key separately under the public keys of those users authorized to
access the file, labeling these encryptions with user identities to speed decryption

(Fig. 1(a)).

(a) A {KF}PkA (b) {KF}PkB

B {Kr}pkp {KF fore

C: {KFr}pke {KF}py
{F}KF {F}KF

Fig. 1. Simple constructions of broadcast encryption systems. File F' is encrypted under
the key Kr, which in turn is encrypted under the public keys of users A, B, and
C. (a) The scheme typically used by encrypted file systems reveals the set of users
authorized to access F'. (b) Modifying this scheme by removing the labels, using a
key-private cryptosystem, and randomly reordering the users yields a private broadcast
scheme resistant to passive attacks on recipient privacy, but decryption time is increased
because recipients must attempt to decrypt each unlabeled component. These simple
schemes are both vulnerable to active attacks.

While these systems protect file contents from unauthorized users, they do
little to protect the identities of users allowed to access the file. Who can access a
file, however, is often more sensitive than the contents of the file itself. Suppose,
for example, a university provides a document on its file server to students with
low average grades. To maintain the privacy of the students, the set of authorized
users should be kept private, not only from outsiders, but from the students in
the group as well.

Current implementations expose the identities of authorized users in two
ways. First, the individual public key encryptions of the symmetric key, K, are

labeled with the identity of the user, as shown in Fig. 1(a). These labels direct
authorized users to their encryptions of Kp, speeding decryption. Second, even
without these labels, an adversary examining the actual ciphertexts can learn
information about the user’s identity. For example, suppose an attacker wants to
determine whether Alice or Bob has access to a particular file. Further suppose
Alice has a 1024-bit key and Bob has a 2048-bit key. An attacker can easily
determine which of the two has access to the file by examining the encryption of
K, specifically the ciphertext length. Thus, the encryptions of Kr leak some
information about who has access to the file.

Private Broadcast Encryption. Our goal is to provide recipient privacy: an en-
crypted file should hide who can access its contents. We approach the problem
of recipient privacy by introducing a notion we call private broadcast encryption.
A private broadcast encryption scheme encrypts a message to several recipients
while hiding the identities of the recipients, even from each other.

The most straightforward construction of a private broadcast encryption
scheme is to modify the scheme currently used in encrypted file systems by
removing the identifying labels and using a public key system that does not
reveal the public key associated with a ciphertext, such as ElGamal or Cramer-
Shoup [1] (Fig. 1(b)). While this scheme is secure against passive attacks on
recipient privacy, it has two disadvantages. First, decryption time is increased as
recipient must perform, on average, n/2 trial decryptions to obtain Kp, where
n is the number of message recipients. Second, an active attacker can mount a
chosen-ciphertext attack and learn whether a user can decrypt a message.

Returning to our example, consider an active attacker who is authorized to
decrypt the document for students with low average grades, where the list of
authorized users should be private. Now, suppose that the attacker wishes to
determine whether Alice can read the document. Because the attacker is a le-
gitimate recipient, he or she knows K and can maliciously prepare a different
encrypted file by replacing the encrypted contents of the original file with con-
tent of the attacker’s choice, encrypted under Kp. Alice is able to read this
maliciously created file if, and only if, she can read the original file. For exam-
ple, a malicious legitimate recipient of the document could copy the document
header, but replace the document body with the message “please visit the fol-
lowing URL for free music,” as illustrated in Fig. 2. Students with low average
grades will expose themselves when they visit the given URL because they are
the only ones who can read the message.

While one could avoid this attack by giving separate encryptions for each user
of the bulk data, this would greatly increase the overall storage demands, as the
contents of each file would need to be replicated for each authorized user. We
solve this problem by building efficient private broadcast encryption systems that
are secure under chosen-ciphertext attacks. Our construction achieves storage
space, encryption time, and decryption time comparable to schemes currently
employed in encrypted file systems.

The remainder of the paper is organized as follows. We define private broad-
cast encryption in Sect. 2, giving a game definition of recipient privacy under a

(a) ci;ea;e3;{F}rp (b) e1;ea; 03 {F iy

Fig. 2. Active attack on recipient privacy. (a) The sensitive document, F, is encrypted
for three recipients. If the attacker is a recipient, he or she learns Kp. (b) The ma-
licious document created by an attacker contains F’ of the attacker’s choice and can
be decrypted by the same users as the original document. Recipients of the original
document can be discovered by tricking them into decrypting the malicious document.

chosen-ciphertext attack. In Sect. 3, we examine the PGP encryption system and
demonstrate attacks against recipient privacy. We present our private broadcast
encryption constructions in Sect. 4. Finally, we conclude in Sect. 5.

1.1 Related Work

The notion of key privacy in the public key setting was first formalized by Bellare
et. al. [1]. A public key encryption system is key-private if ciphertexts do not
leak information about the public keys for which they were encrypted. Specifi-
cally, an adversary viewing a chosen message encrypted under one of two public
keys is unable to guess (with non-negligible advantage) which public key was
used to produce the ciphertext. The authors formalize these definitions for key
privacy under chosen-plaintext attack (IK-CPA) and chosen-ciphertext attacks
(IK-CCA). They show that ElGamal and Cramer-Shoup are secure under these
definitions, respectively, when public keys share a common prime modulus.

Our constructions use a key-private public key system as a component in
building private broadcast encryption systems. One interesting observation is
that the straightforward construction of a private broadcast encryption scheme
using an IK-CCA secure encryption scheme does not result in a private broadcast
encryption system resistant to chosen-ciphertext attacks.

Previous work on broadcast encryption has focused on increasing collusion
resistance and reducing the length of the ciphertext [2-4]. We differ from these
works in that we focus on maintaining the privacy of users, but do not attempt
to achieve ciphertext overhead that is sub-linear in the number of users. Whether
private broadcast encryption systems can be realized with sub-linear ciphertext
overhead is currently an open problem.

2 Private Broadcast Encryption

In this section, we define private broadcast encryption in terms of its correctness
and security properties. A private broadcast encryption system consists of four
algorithms.

— I «— Setup()\). Setup is a randomized algorithm that generates global param-
eters I for the system from a security parameter .

— (pk,sk) < Keygen(I). Keygen is a randomized algorithm that generates
public-private key pairs from the global parameters I.

— C « Encrypt(S,M). Encrypt is a randomized algorithm that generates a
ciphertext C for a message M using a set of public keys S = {pk,...,pk,}
generated by Keygen(I).

— M «— Decrypt(sk, C). Decrypt extracts M from a ciphertext C using a private
key sk if the corresponding public key pk € S, where S is the set used to
generate C. Decrypt can also return L if pk ¢ S or if C' is malformed.

For ElGamal-like systems, the global parameters I simply contain the prime p
and generator g € Z,. This definition enables each user to generate his or her
own public-private key pair individually.

The definition above departs from the standard definition of broadcast en-
cryption in that the standard definition explicitly provides S, the set of recipi-
ents, to the Decrypt algorithm. Here we omit this parameter in order to capture
systems that hide S. There is no loss of generality, however, as S can be included
in the ciphertext, C, directly.

2.1 Recipient Privacy

We define a notion of recipient privacy under a chosen-ciphertext attack for
private broadcast encryption systems using a game between a challenger and an
adversary. This game ensures that the adversary cannot distinguish a ciphertext
intended for one recipient set from a ciphertext intended for another recipient set.
To model a chosen-ciphertext attack we allow the adversary to issue decryption
queries. More precisely, the game defining recipient privacy of a private broadcast
encryption system with n users is as follows:

Init: The challenger runs I <« Setup(\) and publishes the global parameters I.
The adversary outputs Sp, S1 C {1,...,n} such that |Sy| = |S1].

Setup: The challenger generates keys for each potential recipient, (pk;,sk;) <
Keygen(I), and sends to the adversary each pk; for i € So U S; as well as
each sk; for i € Sp N S.

Phase 1: The adversary makes decryption queries of the form (u,C), where
u € Sp U S1, and the challenger returns the decryption Decrypt(sk,,, C). The
adversary may repeat this step as desired.

Challenge: The adversary gives the challenger a message M. The challenger
picks a random b € {0,1}, runs C* — Encrypt({pk; | ¢ € Sy}, M), and sends
ciphertext C* to the adversary.

Phase 2: The adversary makes more decryption queries, with the restriction
that the query ciphertext C # C*. The adversary may repeat this step as
desired.

Guess: The adversary outputs its guess b’ € {0,1}.

We say that the adversary wins the game if b’ = b.

Definition 1. A private broadcast encryption system is (t,q,n,e) CCA recipient
private if, for all t-time adversaries A, the probability A wins the above game
using recipient sets of size at most n and making at most q decryption queries
is at most 1/2 + e.

Definition 2. A private broadcast encryption system is (t,n,e) CPA recipient
private if it is (t,0,n,e) CCA recipient private.

In addition to recipient privacy, a secure broadcast encryption scheme must
be semantically secure against CCA attacks under the standard definition of
semantic security for broadcast encryption systems (see for example [5]).

A standard hybrid argument [6] shows that our definition also implies un-
linkability among sets of ciphertexts. We also observe our definition of recipient
privacy allows C' to leak the number of recipients, just as semantic security allows
a ciphertext to leak the length of the plaintext. The number of recipients can be
hidden by padding the recipient set to a given size using dummy recipients.

Just as public key encryption is a special case of broadcast encryption, key
privacy is a special case of recipient privacy. In key privacy [1], the adversary
is restricted to n = 1, that is to recipient sets Sy and Sy of size 1, mirroring
the restriction on the public key Encrypt algorithm to encrypt only for a single
recipient. Therefore, the IK-CCA definition is equivalent to our recipient privacy
definition with n = 1.

3 Broadcast Encryption in Practice

In this section, we make concrete our discussion of privacy problems in broadcast
encryption systems by examining broadcast encryption systems used in practice.
We study the widely used OpenPGP [7] encryption standard and the GNU
Privacy Guard (GPG) [8] implementation as well as discuss the systems used by
Windows EFS and by Microsoft Outlook.

3.1 The PGP Encryption System

While OpenPGP is commonly associated with encrypted email, it can be used as
a general encryption system. When encrypting a message to multiple recipients,
OpenPGP functions as a broadcast encryption system: it encrypts each message
under a symmetric key K and then encrypts K to each user using his or her
public key. Either ElGamal or RSA encryption can be used for the public key
encryption.

Key IDs and Recipient Privacy. In standard operation, GPG completely exposes
recipient identities (including blind-carbon-copy recipients). Figure 3 contains a
transcript of an attempted GPG decryption of a ciphertext created with a PGP
implementation. The ciphertext reveals the key IDs of two recipients. A key’s ID
is essentially its hash. PGP uses key IDs for two purposes. First, public keys in
the Web of Trust are indexed by key ID. For example, the MIT PGP Public Key

Server [9], when queried for a specific name, returns the key IDs, names, and
email addresses of the principals with the specified name. A principal’s public key
can then be retrieved by querying the server by key ID. Second, key IDs are used
in ciphertexts to label encryptions of the message key (Fig. 1(a)). These labels
speed decryption because the decryptor knows his or her key ID and can locate
the encryption of the message key he or she is able to decrypt. Unfortunately,
attackers also know key IDs. Moreover, after examining a ciphertext, an attacker
need only query a public key server to learn the full name and email address of
the owner of the associated public key.

C:\gpg>gpg —-verbose -d message.txt

gpg: armor header: Version: GnuPG v1.2.2 (MingW32)
gpg: public key is 3CF61C7B

gpg: public key is 028EAE1C

Fig. 3. Transcript of an attempted GPG decryption of a file encrypted for two users.
The identities of the users are completely exposed by their key IDs. These key IDs can
be translated to real identities by a reverse look up on a public key directory.

Throwing Away Key IDs. The OpenPGP standard allows implementations to
omit key IDs from ciphertexts by replacing them with zeros (ostensibly to foil
traffic analysis [10]). This option is available in GPG using the --throw-keyids
command line option, but is disabled by default and thus will not be used if
the command is not given. Omitting key IDs increases the amount of work
required to decrypt a message. A message without key IDs, encrypted to n
recipients, contains n unidentified ciphertexts. To decrypt the message, every
recipient must attempt to decrypt each ciphertext, performing on average n/2
decryption operations.

Even when omitting key IDs, GPG does not achieve recipient privacy. When
GPG generates an ElGamal public key, it does so in the group of integers modulo
a random prime. Thus, different principals are very likely to have public keys
in different groups, making GPG encryptions vulnerable to passive key privacy
attacks. These attacks can be directly translated into attacks on CPA recipient
privacy. GPG could defend against these attacks by using the same prime for
every public key, for example one standardized by NIST [11].

Active Attack. While omitting key IDs and standardizing the group used for
public keys achieves CPA recipient privacy, it does not achieve CCA recipient
privacy. An active attacker could determine the recipients as follows. Suppose
Charlie, the attacker, received the encrypted message {K }pi, [{ K }pko |{ M}
and wishes to determine whether Alice or Bob was the other recipient. As Char-
lie possesses his private key sko, he can recover K, the message key. He can
then encrypt a new message M’ for the same recipient as the original message,

{K}ok, [I{M'} i, by copying the first portion of the header and encrypting M’
under K. When Alice decrypts this message, she obtains M’ whereas when Bob
decrypts this message, he does not obtain M’.

This active attack is potentially more dangerous than the passive attack
in practice. If an attacker wishes to determine a recipient from a large pool
of recipients, the passive attack will likely only eliminate some fraction of the
possible recipients. An active attack, however, could probe each of the potential
recipients individually and learn exactly which ones were recipients of the original
message.

3.2 Other Broadcast Systems

Windows EFS. An encrypted file system can be viewed as a broadcast encryption
system: the file system itself is the broadcast channel, the files are the messages,
and the users who can access a file are the broadcast recipients. The underlying
broadcast encryption scheme used in the Windows Encrypted File System (EFS)
is vulnerable to privacy attacks. A file in EFS is encrypted under a symmetric
key, which in turn is encrypted under the public keys of the users authorized to
read the file. These encryptions of the symmetric key are stored in the file header
and are usually accessible only to the operating system kernel. An attacker who
has physical access to the storage media, for example by duplicating a file server’s
hard drive or stealing a backup copy of the file system, can learn the list of users
authorized to read a file by directly examining the ciphertext component labels.

Outlook. Microsoft Outlook, like many S/MIME clients, is vulnerable to at-
tacks on recipient privacy. When Outlook sends an encrypted email message
to multiple recipients, it prepares a single encrypted message and sends copies
of that ciphertext to each recipient. Components of the ciphertext are labeled
with the issuer and serial number of each recipient’s public key certificate. Many
certificate authorities, including VeriSign [12], provide a free directory service
that translates certificate serial numbers into the certificates themselves. This
reveals the identities of all recipients, compromising the privacy of blind-carbon-
copy (BCC) recipients. Worse, if a BCC recipient uses a self-signed certificate,
Outlook includes his or her full name and email address in the clear in the
message ciphertext sent to all recipients.

In addition to these passive attacks, active attacks on recipient privacy are
particularly easy to mount against encrypted email systems. Each legitimate
message recipient can mount an active attack simply by sending a carefully
constructed email message to a suspected recipient. Some S/MIME clients avoid
these attacks by separately encrypting messages for each recipient. This prevents
legitimate recipients both from learning the identities of other message recipients
and from learning the number of other recipients. However, sending separate
encryptions decreases mail server efficiency and uses more bandwidth.

4 Constructions

In this section, we present two constructions for private broadcast encryption
that achieve CCA recipient privacy. The first is a generic construction from any
public key encryption scheme that has key indistinguishability under chosen-
ciphertext attacks (IK-CCA) [1]. The disadvantage of this first scheme is that
decryption time is linear in the number of recipients because the decryption
algorithm must try decrypting each ciphertext component until it decrypts suc-
cessfully. The second construction is a specialized system in which the decryp-
tion algorithm performs one asymmetric key operation to locate the appropriate
ciphertext component (if one exists). This construction is more efficient for de-
cryptors than the first because no trial decryptions are required. We describe
our two schemes and give intuition for their security.

Both constructions require the underlying public key scheme to be strongly
correct. Essentially, a public key scheme is strongly correct if decrypting a ci-
phertext encrypted for one key with another key results in L, the reject symbol,
with high probability. While this property is not ensured by the standard pub-
lic key definitions, most CCA-secure cryptosystems, such as Cramer-Shoup, are
strongly correct. Before giving a formal definition of strong correctness, we de-
fine a function that generates a random encryption of a given message and then
returns the decryption of that ciphertext with a different random key.

Test(M) : I« Init(\); (pkg,sko) < Gen(I); C « Encpy, (M);
(pky,ski) < Gen(I); Return Decg, (C).

Definition 3. A public key scheme (Init, Gen, Enc, Dec) is € strongly correct if,
for all M, the probability Test(M) # L is at most €.

4.1 Generic CCA Recipient Private Construction

We realize our first construction by modifying the simple CPA recipient private
construction (Fig. 1(b)). Encrypt first generates a random signature and verifi-
cation key for a one-time, strongly® unforgeable signature scheme [13,14] such
as RSA full-domain hash. Then, the encryption algorithm encrypts a ciphertext
component containing the generated verification key using a public key encryp-
tion scheme that has key-indistinguishability under CCA attacks (IK-CCA).
Finally, the algorithm signs the entire ciphertext with the signing key.

The decryption algorithm attempts to decrypt each ciphertext component. If
the public key decryption is successful (i.e. returns non-_1), Decrypt will decrypt
the message only if the signature verifies under the extracted verification key.
Intuitively, an adversary cannot reuse a ciphertext component from the challenge
ciphertext in another ciphertext because he or she will be unable to sign the new
ciphertext under the same verification key. We now give a formal description of
our scheme.

3 In a strongly unforgeable signature scheme, an adversary cannot output a new sig-
nature, even on a previously signed message.

Given a strongly correct, IK-CCA public key scheme (Init, Gen, Enc, Dec), a
strongly existentially unforgeable signature scheme (Sig-Gen, Sig, Ver), and se-
mantically secure symmetric key encryption and decryption algorithms (E, D),
we construct a private broadcast encryption system as follows.

Setup(A): Return Init()).
Keygen(I): Run (pk,sk) < Gen(I) and return (pk, sk).
Encrypt(S, M):
1. (vk,sk) < Sig-Gen(\).
Choose a random symmetric key K.
For each pk € S, cpx «— Encpe(vk||K).
Let C; be the concatenation of the ¢y, in random order.
Cy — Ex(M).
o Sigg (C1]|C2).
7. Return the ciphertext C' = o||C4||Cs.
Decrypt(sk, C): Parse C as o||C4||Cz and Cy = ¢1]| - - - ||em- Foreach i € {1,...,m}:
1. p < Dec(sk, ¢;).
2. If pis L, then continue to the next 1.
3. Otherwise, parse p as vk||K.
4. If Very(C1||C2, o), return M = Dk (Cy).
If none of the ¢; decrypts and verifies, return L.

AR i

Notice the time taken by Decrypt to execute could leak information. Recipient
privacy relies on the attacker being unable to determine whether a decryption
fails because p = L or because the signature did not verify. Implementations
must take care to prevent such timing attacks. We state our main theorem as
follows. Due to space constraints, we give the proof in the full version of the
paper [15].

Theorem 1. If (Init, Gen, Enc, Dec) is both ¢; strongly correct and (t,q,ez) CCA
key private and (Sig-Gen, Sig, Ver) is (t,1,€3) strongly existentially unforgeable,
the above construction is (t,q,n,n(e1 + €2 + €3)) CCA recipient private.

The semantic security of our scheme follows in a straightforward manner.
Because our scheme achieves broadcast encryption by concatenating public key
encryptions, each user can generate his or her own public key and have an
authority issue a certificate binding it to his or her identity.

4.2 CCA Recipient Privacy with Efficient Decryption

To decrypt a ciphertext in the CCA recipient private scheme above, a recipient
must attempt to decrypt n/2 components of the ciphertext, on average, where
n is the number of recipients. Non-private schemes improve performance by
labeling ciphertext components with recipient identities, directing the attention
of decryptors to appropriate ciphertext components. However, these labels reveal
the identities of the recipients.

In this section, we construct a private broadcast encryption system that
requires only a constant number of cryptographic operations in order to decrypt,
regardless of the number of recipients. Our scheme is similar to the previous one
with small modifications. Each private key is extended with a random exponent a
and each public key is extended with the corresponding value g®. The encryption
algorithm first chooses a random exponent r and labels the ciphertext component
for the public key (pk, g*) with H(g"*), where the hash function H is modeled
as a random oracle. When decrypting, each user first calculates H(g"®) and then
uses the result to locate the ciphertext component encrypted for him or her.
Users need only perform one public key decryption to recover the message.

The recipient privacy of this scheme relies on a group G in which the compu-
tational Diffie-Hellman problem is believed to be hard, but there exists an effi-
cient algorithm for testing Diffie-Hellman tuples (i.e. CDH is hard, but DDH is
easy). For example, groups with efficiently computable bilinear maps are widely
believed to have this property [16]. The algorithm for deciding DDH is used in
the simulation proof, but not in the construction itself. The requirement that
DDH be easy can be relaxed, at the cost of a looser reduction.

Let G be a group, with generator g, where CDH is hard and DDH is easy
and let H : G — {0,1}* be a hash function that is modeled as a random
oracle (for some security parameter A). Given a strongly correct, IK-CCA public
key scheme (Init, Gen, Enc, Dec), a strongly existentially unforgeable signature
scheme (Sig-Gen, Sig, Ver), and semantically secure symmetric key encryption
and decryption algorithms (E, D), we construct a private broadcast encryption
system as follows.

Setup(A): Return Init()).
Keygen(I): Run (pk,sk) < Gen(I) and choose a random exponent a. Let pk’ =
(pk, g%) and sk’ = (sk,a). Return (pk’,sk’).
Encrypt(S, M):
(vk, sk) < Sig-Gen(\).
Choose a random symmetric key K.
Choose a random exponent r and set T' = g".
For each (pk, g%) € S, cpk < H(g*")||Encpk(vk||g*" || K).
Let C; be the concatenation of the cpk, ordered by their values of H(g"").
Cy — Ex(M)
o — Sigg (T]|C1]|C2).
8. Return the ciphertext C' = o||T||C1||Cs.
Decrypt((sk, a), C): Parse C as o||T||C1]|Ce and C1 = ¢1]|- - - ||em.
1. Calculate I = H(T*) = H(g"").
Find ¢; such that ¢; = I||c for some ¢, if it exists, else return L and stop.
Calculate p < Dec(sk, ¢).
If pis L, return L and stop.
Otherwise, parse p as vk||z|| K.
If x #£ T%, return L and stop.
If Very (T||C1]|Ca, o), return M = D (Cs); otherwise, return L.

N Ot e

NOoCuk N

Notice decryption time is independent of the number of recipients. Also, the
algorithm for deciding DDH tuples is not used in the construction. The DDH
decisions algorithm is used by the simulator in the proof of the following theorem
to recognize when the adversary has successfully computed a ciphertext compo-
nent label (and thus can be used to defeat CDH). Due to space constraints, we
give the proof in the full version of the paper [15].

Theorem 2. If (Init, Gen, Enc, Dec) is €1 strongly correct, (t,q,e2) CCA seman-
tically secure and (t,q, e3) CCA key private, (Sig-Gen, Sig, Ver) is (t,1,e4) strongly
existentially unforgeable, CDH is (t,e5) hard in G, and DDH is efficiently com-
putable in G, then the above construction is (t,q,n,n(e1 + 2ea + €3 + €4 + 2¢5))
CCA recipient private.

4.3 Identity-Based Encryption Extensions

We can extend our constructions to use Identity-Based Encryption (IBE) [17,
18] by using an anonymous IBE [19, 20] scheme. An IBE scheme is called anony-
mous if a ciphertext does not reveal the identity under which it was encrypted.
The Boneh-Franklin scheme [18] has this property, for example. Identity-based
encryption is advantageous in our setting where the identities of the recipients
should be kept private because an identity-based encryption algorithm need not
retrieve a recipient’s public key certificate in order to encrypt to him or her. Typ-
ical public key systems require encryptors to obtain the public keys of recipients
over a network. An eavesdropper could potentially ascertain information about
message recipients by monitoring the public keys requested by the encryptor.
An IBE encryptor, however, need not make such network requests and avoids
this potential vulnerability.

5 Conclusions

In many content distribution applications it is important to protect both the
content being distributed and the identities of users allowed to access the content.
Currently, encrypted file systems and encrypted email systems fail to protect
the privacy of their users. User privacy is compromised because the underlying
encryption schemes disclose the identities of a ciphertext’s recipients. Many such
systems simply give away the identities of the users in the form of labels attached
to the ciphertext. Additionally, those systems that attempt to avoid disclosing
the recipient’s identity, such as GnuPG, are vulnerable to having their user’s
privacy compromised by a new chosen-ciphertext attack that we introduced.

Our proposed mechanism, private broadcast encryption, enables the efficient
encryption of messages to multiple recipients without revealing the identities of
message recipients, even to other recipients. We presented two constructions of
private broadcast encryption systems. Both of these satisfy a strong definition of
recipient privacy under active attacks. The second additionally achieves decryp-
tion in a constant number of cryptographic operations, performing comparably
to current systems that do not provide user privacy.

References

1. Bellare, M., Boldyreva, A., Desai, A., Pointcheval, D.: Key-privacy in public-key
encryption. In: ASTACRYPT ’01: Proceedings of the 7th International Conference
on the Theory and Application of Cryptology and Information Security. Volume
2238 of LNCS., Springer—Verlag (2001) 566—582

2. Fiat, A., Naor, M.: Broadcast encryption. In: CRYPTO ’93: Proceedings of Ad-
vances in Cryptology. Volume 773 of LNCS., Springer—Verlag (1994) 480-491

3. Naor, M., Pinkas, B.: Efficient trace and revoke schemes. In: Financial cryptogra-
phy 2000. Volume 1962 of LNCS., Springer—Verlag (2000) 1-20

4. Naor, D., Naor, M., Lotspiech, J.: Revocation and tracing schemes for stateless
receivers. In: CRYPTO ’01: Proceedings of Advances in Cryptology. Volume 2139
of LNCS., Springer—Verlag (2001) 41-62

5. Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with
short ciphertexts and private keys. In: CRYPTO ’05: Proceedings of Advances in
Cryptology. Volume 3621 of LNCS., Springer—Verlag (2005) 258-275

6. Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user setting:

Security proofs and improvements. In: EUROCRYPT ’00: Proceedings of Inter-

national Conference on the Theory and Application of Cryptographic Techniques.

Volume 1807 of LNCS., Springer—Verlag (2000) 259274

OpenPGP: The OpenPGP alliance home page (2005) http://www.openpgp.org/.

Werner Koch: The GNU privacy guard (2005) http://www.gnupg.org/.

MIT: MIT PGP public key server (2005) http://pgpkeys.mit.edu/.

Callas, J., Donnerhacke, L., Finney, H., Thayer, R.: RFC 2440: OpenPGP message

format (1998) http://www.ietf.org/rfc/rfc2440.txt.

11. National Institute of Standards and Technology: Digital signature standard (DSS)
(2000) http://www.csrc.nist.gov/publications/fips/.

12. VeriSign: Search for digital IDs (2005) https://digitalid.verisign.com/services/client /.

13. Lamport, L.: Constructing digital signatures from a one way function. Technical
report, SRI International (1979)

14. Rompel, J.: One-way functions are necessary and sufficient for secure signatures.
In: STOC ’90: Proceedings of the Twenty-Second Annual ACM Symposium on
Theory of Computing, ACM Press (1990) 387-394

15. Barth, A., Boneh, D., Waters, B.: Privacy in encrypted content distribution using
private broadcast encryption (2006) http://www.adambarth.org/papers/barth-
boneh-waters-2006-full.pdf.

16. Joux, A., Nguyen, K.: Separating Decision Diffie-Hellman from Diffie-Hellman in
cryptographic groups. Technical Report eprint.iacr.org/2001/003 (2001)

17. Shamir, A.: Identity-based cryptosystems and signature schemes. In: CRYPTO
’84: Advances in Cryptology. Volume 196 of LNCS., Springer—Verlag (1985) 47-53

18. Boneh, D.; Franklin, M.K.: Identity-based encryption from the Weil pairing. In:
CRYPTO ’01: Proceedings of Advances in Cryptology. Volume 2139 of LNCS.,
Springer—Verlag (2001) 213-229

19. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption
with keyword search. In: EUROCRYPT ’04: Proceedings of International Confer-
ence on the Theory and Application of Cryptographic Techniques. Volume 3027 of
LNCS., Springer—Verlag (2004) 506-522

20. Abdalla, M., Bellare, M., Catalano, D., Kiltz, E., Kohno, T., Lange, T., Malone-
Lee, J., Neven, G., Paillier, P., Shi, H.: Searchable encryption revisited: Consis-
tency properties, relation to anonymous IBE, and extensions. Technical Report
eprint.iacr.org/2005/254 (2005)

v x N

